It is known that polar codes can be efficiently constructed for binary-inputchannels. At the same time, existing algorithms for general input alphabets areless practical because of high complexity. We address the construction problemfor the general case, and analyze an algorithm that is based on successivereduction of the output alphabet size of the subchannels in each recursionstep. For this procedure we estimate the approximation error as$O(\mu^{-1/(q-1)}),$ where $\mu$ is the "quantization parameter," i.e., themaximum size of the subchannel output alphabet allowed by the algorithm. Thecomplexity of the code construction scales as $O(N\mu^4),$ where $N$ is thelength of the code. We also show that if the polarizing operation relies on modulo-$q$ addition,it is possible to merge subsets of output symbols without any loss insubchannel capacity. Performing this procedure before each approximation stepresults in a further speed-up of the code construction, and the resulting codeshave smaller gap to capacity. We show that a similar acceleration can beattained for polar codes over finite field alphabets. Experimentation shows that the suggested construction algorithms can be usedto construct long polar codes for alphabets of size $q=16$ and more withacceptable loss of the code rate for a variety of polarizing transforms.
展开▼
机译:众所周知,对于二进制输入通道可以有效地构造极性码。同时,由于复杂度高,现有的通用输入字母算法不太实用。我们解决了一般情况下的构造问题,并分析了基于递归减少每个递归步骤中子通道的输出字母大小的算法。对于此过程,我们估计近似误差为$ O(\ mu ^ {-1 /(q-1)}),$,其中$ \ mu $是“量化参数”,即允许的子通道输出字母的最大大小通过算法。代码构造的复杂度缩放为$ O(N \ mu ^ 4),$,其中$ N $是代码的长度。我们还表明,如果极化操作依赖于模-qq $加法,则可以合并输出符号的子集而不会损失子信道容量。在每个近似步骤之前执行此过程会进一步加快代码构建速度,并且所产生的代码与容量之间的差距也较小。我们表明,对于有限域字母上的极性代码,可以达到类似的加速度。实验表明,所建议的构造算法可用于构造尺寸为$ q = 16 $的字母表的长极性代码,并且对于各种偏振变换,其编码率的损失更大。
展开▼